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Abstract. In this work we introduce the Aspect Transition Graph (ATG),
an affordance-based model that is grounded in the robot’s own actions
and perceptions. An ATG summarizes how observations of an object
or the environment changes in the course of interaction. Through the
Robonaut 2 simulator, we demonstrate that by exploiting these learned
models the robot can recognize objects and manipulate them to reach
certain goal state.

Keywords: Robotic Perception, Object Recognition, Belief-Space Plan-
ning

1 Introduction

The term affordance first introduced by Gibson [1] has many interpretations,
we prefer the definition of affordance as “the opportunities for action provided
by a particular object or environment.” Affordance can be used to explain how
the “value” or “meaning” of things in the environment is perceived. Our models
are based on this interactionist view of perception and action that focus on
learning relationships between objects and actions specific to the robot. Some
recent work [2] [3] [4] in computer vision and robotics extended this concept
of affordance and applied it to object classification and object manipulation.
Affordances can be associated with parts of an object as, for example in the work
done by Varadarajan [5] [6], where predefined base affordances are associated
with surface types. In our work, we build models that inform inference in an
extension of Gibson’s original ideas about direct perception [7] [8].

Affordances describe the interaction between an agent and an object (or en-
vironment). For example [1], a chair that is “sittable” for a grown-up might not
be “sittable” for a child. In this work we introduce the Aspect Transition Graph
(ATG), an affordance-based model that is grounded in the robot’s own actions
and perceptions. Instead of defining object affordances from a human perspec-
tive, they are learned by direct interaction on the part of the robot. Using the
Robonaut 2 simulator [9], we demonstrate that by exploiting these learned mod-
els the robot can recognize objects and manipulate them to reach goal states.
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2 Aspect Transition Graph

Fig. 1. An example of an incomplete aspect transition graph (ATG) of a cube. Each
aspect consists of an observation of two faces of the cube. The lower right figure shows
the coordinate frame of the actions and the aspect in the upper right is the “collection
node” representing all unknown aspects of the object that may be present. Each solid
edge represents a transition between aspects associated with a particular action. Each
dotted edge is a transition that may not yet have been observed.

Aspect Graphs were first introduced to represent shape [10] [11] in the field
of computer vision. An Aspect Graph contains distinctive views of an object
captured from a viewing sphere centered on the object. The Aspect Transition
Graph introduced in this paper is an extension of this concept. In addition to
distinctive views, the object model summarizes how actions change viewpoints
or the state of the object and thus, the observation. Besides visual sensors,
extensions to tactile, auditory and other sensors also become possible with this
representation. The term Aspect Transition Graph was first used in [12] but
redefined in this work.

An object in our framework is represented using a directed graph G = (X ,U),
composed of a set of aspect nodes X connected by a set of action edges U that
capture the probabilistic transition between the aspect nodes. Each aspect x ∈ X
represents the properties of an object that are measurable given a set of sensor
parameters. The ATG summarizes empirical observations of aspect transitions
in the course of interaction.

The ATG of an object is complete if it contains all possible aspect nodes
and node transitions. However, in practice, when ATGs are learned through ex-
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ploration they are almost always incomplete. In addition, an object might be
represented by multiple (incomplete) ATGs. A complete model is more informa-
tive but harder to learn autonomously. In this paper, we will focus on handling
incomplete object models. Each of our ATG models have a single collection node
representing all unobserved aspects. Figure 1 shows an example of an incomplete
ATG on a cube object with a character on each face.

3 Modeling and Recognition

The robot memoryM is defined as a set of ATGs that the robot created through
past interaction. Each ATG in the robot memory represents a single object
presented to the robot in the past. An ATG is added to the M only if the
presented object is judged to be novel. Let ST−1 denote the set of objects that
have been presented to the robot in the first T − 1 trials. Given a sequence of
observations z1:t and actions a1:t during trial T , the probability that the object
presented during trial T , OT , is novel can be calculated;

p(OT /∈ ST−1|z1:t, a1:t,M)

=
∑

oi /∈ST−1

p(OT = oi|z1:t, a1:t,M)

=
∑

oi /∈ST−1

∑
xt∈Xi

p(xt|z1:t, a1:t). (1)

Where oi is an element of set O designating all of the objects in the environment.
Element xt of set Xi describes all the aspects comprising object oi. The condi-
tional probability p(xt|z1:t, a1:t) of observing an aspect can be inferred using a
Bayes filter. Object OT is classified as novel if p(OT /∈ ST−1|z1:t, a1:t,M) > 0.5.

If a particular object is judged to be a previously observed object, we asso-
ciate it with the ATG that is most likely to generate the same set of observations.
The posterior probability of object oi is calculated by summing the conditional
probability of observing aspect xt over all aspects comprising object oi,

p(OT = oi|z1:t, a1:t,M) =
∑

xt∈Xi

p(xt|z1:t, a1:t). (2)

The posterior probability of an aspect p(xt|z1:t, a1:t) is calculated after each
measurement and control update using the Bayes Filter Algorithm [13].

4 Task-level Planning

The challenge of integrating task-level planners with noisy and incomplete mod-
els requires that we confront the partial observability of the state while building
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plans. Since the true state of the system cannot be observed, it must be inferred
from the history of observations and actions. Our planner belongs to a set of
approaches (for example [14][15]) that select actions to reduce the uncertainty
of the state estimate maximally with respect to the task.

Object recognition can be viewed as one such task in which the uncertainty
over object identities (as quantified by the object entropy) is reduced with each
observation. Our task planner selects the action at that minimizes the expected
entropy of the distribution over elements of set OT representing the object iden-
tity [16];

argmin
at

E(H(OT |zt+1, at, z1:t, a1:t−1))

= argmin
at

∑
zt+1

H(OT |zt+1, at, z1:t, a1:t−1)×

p(zt+1|at, z1:t, a1:t−1). (3)

Once the object entropy is lower than a threshold, the robot has high cer-
tainty regarding the ATG in robot memory that represents the same object.
All aspect nodes in this ATG that are reachable from the current aspect node
represent the set of aspects that the robot can observe by executing a sequence
of actions. If a goal aspect is in one of these aspects, the actions on the shortest
path from the current aspect node to the goal aspect node represents an optimal
sequence of actions for achieving the goal state.

5 Experiments

We evaluated the capabilities of the proposed affordance models and planner
using the Robonaut 2 simulator shown in Figure 2. The simulation contains
100 unique objects called ARcubes that consist of a 28cm cube with unique
combinations of ARtags on the six faces; 12 different ARtag patterns are used in
this experiment. In an ATG for an ARcube, an aspect consists of ARtag features
observed on 2 faces. Each ATG has 24 unique aspects and each aspect has 132
different pattern combinations. For the sake of simplicity, we assume that an
object does not have two faces with the same ARtag. The robot can perform 3
different manipulation actions on the object: 1) flip the top face of the cube to
the front, 2) rotate the left face of the cube to the front, and 3) rotate the right
face of the cube to the front. We emphasize that there is no geometrical model
of a cube in our experiments and that every inference is based simply on the
combination of observation and action. In particular this approach is applicable
to a wide variety of objects and actions.

Table 1 shows the result of using the planner to recognize the object pre-
sented. Each test involves 100 trials and starts with an empty robot memory
M. In each trial, the task is to decide which ATG in memory the experiment
corresponds to or to declare it to be novel. For each trial, an object is chosen at
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Fig. 2. The simulated Robonaut 2 interacting with an ARcube.

random and presented to the robot. The robot observes the object and executes
an action. This process is repeated 20 times. At the end of each trial the robot
determines the likelihood that the presented object is novel and the most likely
existing object in memory is identified.

The last row in Table 1 presents the results averaged over all the tests. The
success rate is the percentage of objects correctly classified, that is, correctly
identified in memory or declared as a novel object. The system correctly rec-
ognizes the object 100% of the time, and correctly determines if the presented
object is novel or not 98.8% of the time.

Table 1. The success rate of an information theoretic planner in recognizing the object
(20 actions per trial)

Test Correct Identification Correct Recognition Success Rate

1 100/100 34/34 100%

2 98/100 32/32 98%

3 98/100 40/40 98%

4 99/100 37/37 99%

5 99/100 32/32 99%

average 98.8% 100% 98.8%

We also tested the efficiency of the planner against a random policy. The
number of actions executed per trial were varied from 4 to 20. Figure 3 shows
how the success rate of a test varies with the number of actions executed per
trial. As is evident from the plots, the information theoretic planner outperforms
a random exploration policy for all cases except when the number of actions per
trial is low. Both algorithms perform equally poor when not enough information
is provided.

To demonstrate how ATGs can be used to reach certain goal state. We set up
an environment where 3 ARcubes are located in front of the simulated Robonaut



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV
#***

ECCV
#***

6 ECCV-14 submission ID ***

Fig. 3. The plot shows the average success rate of 10 tests as the number of actions per
trial are increased. Selecting actions that minimize entropy leads to a higher success
rate then selecting actions at random.

2 as shown in Figure 2. The goal is to rotate the cubes till certain faces are ob-
servable. The robot starts with a robot memory learned through interacting with
20 different ARcubes including the 3 ARcubes located in the test environment.
To achieve the goal state, Robonaut 2 manipulates the object to condense belief
over objects. Once the object entropy is lower than a threshold, Robonaut 2 tries
to execute the sequence of actions that is on the shortest path from the current
aspect node to the goal aspect node in the corresponding ATG if such goal aspect
node exists. In this experiment, the simulated Robonaut 2 successfully reaches
the goal state by manipulating the cubes so that the observed aspects match the
given goal aspects.

6 Conclusion

This paper introduces an affordance-based model and an incremental learning
framework for building a memory of objects through interaction. We also pre-
sented a Bayes framework that performs inference over incomplete object models.
We then showed the strengths of combining this representation with a planner
that minimizes the entropy over object identities. For future work, we are plan-
ning to test our algorithm on objects a greater number of objects with more
realistic features and are interested in studying when to merge incomplete object
models from different trials. We are also exploring how to represent interactions
between multiple objects in the scene and extensions of the idea that can incor-
porate multi-modal sensory features like tactile data and temporally extended
actions.
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